

0040-4020(93)E0030-J

Three Novel Pregnane Glycosides from Leptadenia reticulata Wight and Arn.

Sanjay Srivastav, Desh Deepak and Anakshi Khare*

Department of Chemistry Lucknow University Lucknow - 226 007, India.

Key Words: Leptadenia reticulata; Asclepiadaceae; Pregnane glycoside: Reticulin; Deniculatin; Leptaculatin

Plants belonging to family Asclepiadaceae are rich source of biologically active cardiac¹ and pregnane glycosides² which are known to possess anti-tumour and anticancer³ activity. Leaves of *L. reticulata* (Wight and Arn) are used in asthma and cough⁴ in folk medicine and has also shown to possess lactogenic property.⁴ Previous chemical studies of the plant showed the presence of flavonoids, triterpenes and steroids.^{5,6} This paper reports the isolation and structure elucidation of three novel pregnane glycosides (1), (2) and (3) from the combined chloroform- chloroform: ethanol (4:1) extracts by repeated column chromatography.

RESULTS AND DISCUSSION

Reticulin (1), C48H80O17 (positive-ion FABMS: m/z 929 [M⁺+1]), mp 119-122°C [α]D-7.1°, responded positively to Liebermann- Burchardt⁷ test for steroids, and xanthydrol⁷ and Keller-Kiliani⁷ reactions for 2,6-dideoxy sugar indicating it to be a steroidal glycoside with 2-deoxy sugar(s). It showed four anomeric carbons

at δ 103.7, 103.0, 102.4 and 99.3 in its ¹³C NMR spectrum and four anomeric protons at δ 5.16 (1H), 4.77 (1H) and 4.73 (2H) in its ¹H NMR spectrum at 400 MHz suggesting it to be a tetraglycoside. Besides, the ¹HNMR spectrum also showed three singlets of three protons each at δ 3.52, 3.49 and 3.46 for three methoxy functions and methylene group signals in the region δ 2.30-2.36 (3H) and 1.81-1.88 (3H) for the respective equatorial and axial protons of 2-deoxy sugars, indicating the presence of three 2-deoxy sugars in tetraglycoside (1).

The aglycon and monosaccharides of (1) were identified by hydrolysing it under mild acid (conc. HCl:Acetone, 1:100) condition using the method of Mannich and Siewert.⁸ After 3 days one new spot appeared which was identical to D-cymarose (TLC, PC). After 7 days two new spots appeared which were identified as calogenin (4)⁷ and presumably the disaccharide (5) (TLC) with the complete consumption of original glycoside (1). Hydrolysis was complete after 10 days showing four spots on TLC which were identified as calogenin (4). D-cymarose,⁹ D- digitoxose⁷ and 3-O-methyl-D-galactose¹⁰ with the authentic samples (TLC, PC, [a]b). D-cymarose and D-digitoxose were further characterized by preparing their respective acid phenyl hydrazides^{9,7} while 3-O-methyl-galactose was converted to methyl-3-O-methyl- α -D-galactopyranoside¹⁰ and compared with its synthetic sample (TLC, PC, $[\alpha]_D$). The sequence of the sugars in (1) was established by hydrolysing it under very mild acid conditions (0.005 N H₂SO4 at room temperature). After 10 days, reaction mixture exhibited three spots which were identified as D-cymarose (TLC), presumably a triglycoside (6) and starting material (1) showing that D-cymarose was at the terminal end. After 15 days, two new spots (TLC) appeared which were probably of disaccharide (5) and monoglycoside (7). The hydrolysis was complete after 20 days, showing four spots identified as calogenin (4), D-cymarose, D-digitoxose and 3-O-methyl-D-galactose (TLC, PC). Thus, the disaccharide (5), which is made up of 3-O- methyl-D-galactose and D-digitoxose, the latter being at reducing end, is second in sequence after the terminal D-cymarose. It further suggested that the sugar chain is glycosidically linked to the aglycon (4) through remaining methoxy-2,6-dideoxy sugar i.e. D-cymarose. For convenience, the four monosaccharides of (1) were designated as S4, S3, S2 and S1, respectively, starting from the terminal end.

The ¹H NMR spectrum of (1) showed a one proton doublet at $\delta 5.16$ (J=4 Hz) and two double-doublets at $\delta 4.77$ (1H, J=8 and 2 Hz) and 4.73 (2H, J=9 and 2 Hz) due to anomeric protons of S₃, the two units of D-cymarose (S4 and S₁) and S₂ respectively. The large coupling constants of the two double- doublets showed the presence of 2-deoxy sugars S₄, S₂ and S₁ in ⁴C₁ (D)¹¹ conformation linked through β -glycosidic linkages. The small coupling constant of the doublet due to S₃ showed an α -glycosidic linkage present in ⁴C₁ (D) confirmation. The ¹³C NMR spectrum of (1) conforms to the suggested structure (table 1). The FAB mass spectrum of (1) showed protonated molecular ion [M⁺+1] at m/z 929. The molecule after the loss of C-17 side chain (CH₃CHOH) gave ion fragment at m/z 883 showing the point of attachment of the sugar chain to the only available C-3 hydroxyl group of the aglycon. The point of attachment of the sugar chain to the C-3 hydroxyl group of aglycon was further supported by the downfield shift of acetylated C-20 methine proton at $\delta 5.11$ with respect to the parent precursor in the ¹HNMR spectrum of penta-O-acetyl reticulin (8). The FABMS of (1) also showed the sugar component [tetrasaccharide + H] at m/z 613. The characteristic fragment ion¹² peaks supporting the sequence of sugars and the structure of (1) are discussed in experimental section. The structure of (1) was thus defined as

Carbon	(1)	(2)	(3)	Carbon	(1)		(2)		(3)
		Aglycone			Sugars				
1	36.1 ^a	35.1	36.0	Cvm-1	102.4	Dig-1	97.0	Cvm-1	102.7
2	29.1 ^c	29.6 ^a	29.6 ^a	2	36.4 ^a	2	39.7	2	36.9 ^d
3	75.8 ^d	77.9	77.2	3	77.2	3	69.5	3	78.9
4	38.9 ^b	38.7	38.8	4	85.2	4	81.8	4	82.8
5	140.7	140.4	140.8	5	70.9	5	67.5	5	68.2
6	121.1	121.5	120.2	6	18.6	6	18.2	OMe	56.1
7	29.1	29.6 ^a	29.6 ^a	OMe	60.0	Gal-1	103.3	Glu-1	103.9
8	33.3	32.7	32.7	Dig-1	99.3	2	75.7	2	73.9
9	53.0	56.1 ^b	56.1 ^a	2	39.3 ^b	3	86.1	3	75.7 ^e
10	38.4 ^a	37.5 ^c	37.5 ^d	3	68.4	4	74.3	4	78.1
11	22.2	22.6	22.6	4	81.7	5	72.6	5	76.8 ^b
12	36.4 ^a	37.1 ^c	37.1 ^a	5	67.4	6	63.0	6	60.4
13	50.5	50.3	50.3	6	17.4 ^e	OMe	60.6	Glu-1	104.2
14	87.1	87.0	87.0	Gal-1	103.7			2	72.4
15	31.3	31.9	31.9	2	75.9 ^a			3	75.9 ^e
16	28.7 ^c	29.3 ^a	29.3 ^a	3	86.2			4	70.4,
17	53.8	56.3 ^b	56.3 ^c	4	77.2			5	77.2 ^b
18	13.6	14.0	14.0	5	71.4			6	60.4
19	15.7	16.4	16.4	6	63.1				
20	66.6	65.0	65.0	OMe	60.0				
21	19.2	19.8	19.8	Cym-1	103.0				
				2	38.4 ⁰				
				3	79.1				
				4	73.3				
				5	73.3				
				6	17.8 ^e				
				OMe	57.6				

Table 1: ¹³C NMR Shifts of (1), (2) and (3)

Cym = D-Cymarose, Dig = D-digitoxose, Gal = 3-O-methyl-D-galactose, Glu = D-glucose.

a, b, c, d e Assignments within the column of each compound may be interchanged.

calogenin-3-O- β -D-cymaropyranosyl-(1 \rightarrow 4)-O-3-O-methyl- α -D-galactopyranosyl-(1 \rightarrow 4)-O- β -D-digitoxopy-ranosyl-(1 \rightarrow 4)-O- β -D- cymaropyranoside.

Deniculatin (2), mp 124-127°C, $[\alpha]D - 19.4^{\circ}$, C₃₄H₅₆O₁₁ (positive-ion FABMS: m/z 663 [M⁺+Na]) gave positive Liebermann- Burchardt, xanthydrol, Keller-Kiliani and Feigl tests¹³ indicating it to be a steroidal glycoside of 2-deoxy and normal sugars. The ¹³C NMR of (2) showed two anomeric carbons at δ 103.3 and 97.0 suggesting it to be a diglycoside. The ¹HNMR spectrum of (2) showed two anomeric proton signals at δ 4.82 (1H, d, J=1 Hz) and δ 4.64 (1H, dd, J=9 and 2 Hz) confirming the diglycosidic nature of (2). The smaller coupling constant (J=1 Hz) for the normal sugar exhibiting anomeric doublet showed that it is glycosidically linked by an α -linkage in its ⁴C₁ (D) conformation, while the larger coupling (J=9 Hz) for the double-doublet suggested a β -glycosidic linkage for the 2- deoxy sugar in its ⁴C₁ (D) conformation. The ¹HNMR further showed methylene group signals in the region δ 2.11-2.17 and 1.75-1.81 for the respective equatorial and axial protons of the 2-deoxy sugar alongwith two secondary methyl group doublets at δ 1.22 (3H, d, J=7 Hz) and 1.19 (3H, d, J=6 Hz) and a methoxy group singlet of three protons at $\delta 3.49$. The ¹³C NMR data of (2) (table 1) was in close conformity with the results deduced from ¹H NMR spectrum.

Mild acid hydrolysis of (2) by Mannich and Siewert⁸ method helped in the identification of the monosaccharides of glycoside (2). After two days the reaction mixture showed two spots, the less polar one was identical to calogenin (4) while the polar one was the glycon (5). Hydrolysis was complete in 5 days, showing three spots which on column chromatography afforded calogenin (C₂₁H₃₄O₃), D-digitoxose and 3-O-methyl-D-galactose. Thus in (2), 3-O-methyl-D-galactose is the terminal sugar attached to aglycon (4) through D-digitoxose.

The difference of C₁₃H₂₂O₈ between the molecular formulae of (2) and (4) further supported the presence of one normal and one 2,6- dideoxy hexose in (2). The FABMS showed [M⁺+Na] at m/z 663. The ion fragment at m/z 577 corresponding to [M⁺-H₂O-(C17 side chain CH₃CHOH)] showed that the sugar chain is linked to the aglycon through C-3. In the EIMS of (2), the other fragments due to aglycon and sugar were recorded at m/z 289 and 306 corresponding to [genin - side chain] and [disaccharide - H₂O] respectively. It also contained the significant fragments of di- and monosaccharide units of (2). Compound (2) on acetylation with pyridine - Ac₂O yielded penta-O-acetyl deniculatin (9). The downfield shifting of H-20 of aglycone to $\delta 4.56$ in the ¹HNMR of (9) confirmed the attachment of the sugar chain to C-3 of the aglycon. Thus, the structure of (2) was established as calogenin-3-O-3-O-methyl- α -D-galactopyranosyl-(1→4)-O- β -D-digitoxopyranoside.

Leptaculatin (3), m.p. $107-110^{\circ}$ C, $[\alpha]_D-5.8^{\circ}$ gave molecular formula C40H66O16 supplemented by a protonated molecular ion peak at m/z 803 in the positive ion fast-atom- bombardment mass spectrum. The ¹³C NMR of (3) which contains three anomeric carbons at $\delta 104.2$, 103.9 and 102.7 alongwith three anomeric protons at $\delta 4.45$ (1H) and 4.32 (2H) in conjunction with positive tests with Liebermann-Burchardt, xanthydrol and Keller-Kiliani reactions showed it to be steroidal triglycoside of deoxy sugar(s).

Compound (3) on hydrolysis with 0.05N H₂SO4⁹ in dioxan yielded calogenin (4) m.p. 199-201°C, $[\alpha]D-50^{\circ}$ and a syrupy sugar $[\alpha]D-53.6^{\circ}$ which was presumably the trisaccharide (10). To identify the monosaccharide units of (3), Mannich hydrolysis⁸ was done. After 2 days, the reaction mixture exhibited two spots, the less polar one was identical in mobility with calogenin (4) while the polar one was the sugar (10). After 5 days two new spots were observed which were identified as D-cymarose and cellobiose (TLC, PC). After 7 days the hydrolysis was complete affording calogenin (4), D-cymarose and D-glucose.¹⁴ For further characterization, D-cymarose and D-glucose were converted to their known D-cymaronic acid phenyl hydrazide⁹ and D-gluconic acid phenyl hydrazide¹⁴ respectively.

The configuration of the glycosidic linkages were ascertained by the ¹HNMR spectrum of (3) at 400 MHz. A two proton doublet (\underline{J} =8 Hz) at $\delta 4.32$ in the spectrum was assigned to the two identical anomeric protons of two glucose units. A one proton double-doublet centered at $\delta 4.45$ (\underline{J} =9 and 2 Hz) was attributed to the anomeric proton of the D-cymarose residue. The large coupling constants (8 and 9 Hz) were typical of an axial orientation of anomeric protons in the ⁴C₁ (D) conformation indicating β -glycosidic linkages for all the three sugar units. The structure of glycoside (3) was also supported by its ¹³C NMR spectrum (table 1).

The FABMS of (3) also showed ion peak at m/z 757 which was attributed to $[M^+-C17]$ side chain (CHOHCH₃)] confirming the point of attachment of the sugar chain to the only available C-3 hydroxyl group of the aglycon. In the ¹H NMR spectrum of octa-O- acetyl leptaculatin (11), the downfield shifting of acetylated methine proton at C-20 of the aglycon to δ 4.67 with respect to its parent precursor in (3) further supported the point of attachment of sugar chain to the aglycon. Other significant fragments obtained were m/z 640 [M⁺-(terminal Glu- OH)], 577 [640-H₂O-CH₃CHOH], 545 [577-CH₃OH], 486 [trisaccharide] and 469 [trisaccharide-OH] further confirming the derived structure. Consequently, the structure of (3) was deduced as calogenin-3-O- β -D-glucopyranosyl-(1 \rightarrow 4)-O- β -D-glucopyranosyl-(1 \rightarrow 4)-O- β -D-cymaropyranoside.

EXPERIMENTAL

General procedures were same as reported earlier.⁹ ¹H and ¹³C NMR spectra were recorded on a 400 MHz (Bruker) spectrometer in CDCl₃ with TMS as internal standard. FAB and EI mass spectra were recorded with JEOL mass spectrometer model JMS-SX102 FAB with DA 6000 Data System and JEOL mass spectrometer D-300 with IMA-2000 Data system respectively. TLC was performed on silica-gel G (BDH) and column chromatography was done over silica-gel 60-120 mesh (Qualigens). Normal sugars were made visible by Partridge reagent on PC.

Plant extraction.

The aerial part of plant *L. reticulata* (30 kg) was collected locally. The identity of the plant was confirmed by Dr M.N. Srivastav, Botanist, Central Drug Research Institute, Lucknow, India, where a voucher specimen was deposited. Shade dried powdered plant material (10 kg) was extracted and fractionated by the method used for pregnane glycoside.¹⁵ These fractions on evaporation yielded petroleum-ether, 1.2 g; Et₂O, 16.0 g; CHCl₃, 5.0 g; CHCl₃-EtOH (4:1), 2.3 g; CHCl₃-EtOH (3:2), 2.1 g. Repeated column chromatography of mixed CHCl₃ and CHCl₃-EtOH (4:1) extract using CHCl₃-MeOH (95:5) as eluent yielding Reticulin (1) (59 mg), Deniculatin (2) (50 mg) and Leptaculatin (3) (62 mg).

Retkulin (1), mp 119-122°C, $[\alpha]_D$ -7.1° (<u>c</u>, 0.14; MeOH), (Found: C, 62.39; H, 8.61%; C48H80O17 requires C, 62.07; H, 8.62%). It gave positive colours in xanthydrol, Keller-Kiliani and Liebermann-Burchardt tests. ¹H NMR $\delta 0.75$ (3H, s, 19Me), 1.0 (3H, s, 18Me), 1.27 (6H, d, J=7Hz, 21Me; 6'Me), 1.29 (3H, d, J=6 Hz, 6'Me), 1.32 (3H, d, J=6 Hz- 6'Me), 1.81-1.88 (3H, m, H-2'ax-S1,S2,S4), 2.30-2.36 (3H, m, H-2' eq.- S1, S2, S4), 3.46, 3.49, 3.52 (3H each, 3s, 3 x OMe), 3.55-3.61 (5H, m, H-4'-S1,S2,S3,S4; H-2'-S3), 4.26-4.36 (3H, m, H-6'-S3; H-20), 4.73 (2H, dd, J=9 and 2 Hz; H-1'; S1,S4), 4.77 (1H, dd, J=8 and 2 Hz, H-1'-S2), 5.16 (1H, d, J=4Hz, H-1'-S3), 5.35 (1H, m, H-6). FABMS: m/z 929 [M⁺+1], 883 [M⁺-CH3CHOH], 851 [883-CH3OH]⁺, 833 [851-H₂O]⁺, 789 [833-CH3CHO]⁺, 784 [M⁺-(S4-OH)]⁺, 739 [789- CH3OH-H₂O; 784-CH₃CHOH]⁺, 721 [739 - H₂O]⁺, 695 [739 - CH₃OH- CH₂OHCHO]⁺, 671 [721-CH₃OH-H₂O]⁺, 645 [721-CH₃OH- CH₃CHO]⁺, 639 [671 - CH₃OH]⁺, 633 [695 - H₂O - CH₃CHO]⁺, 621 [639-H₂O]⁺, 613 [tetrasaccharide +H]⁺, 603 [695-CH₃OH-CH₂OHCHO]⁺, 595 [tetrasaccharide-OH]⁺, 583 [645-H₂O-CH₃CHO]⁺, 577 [595-H₂O]⁺, 573 [633-

CH₂OHCHO]⁺, 559 [603-CH₃CHO]⁺, 551 [583-CH₃OH]⁺, 547 [583-2H₂O]⁺, 545 [M⁺-S₄-(S₃-OH)-CH₃CHOH-H₂O; 577-CH₃OH]⁺, 543 [573-2CH₃]⁺, 532 [547-CH₃]⁺, 527 [545-H₂O]⁺, 512 [527-CH₃]⁺, 511 [tetrasaccharide-C₅H₉O₂]⁺, 501 [545-CH₃CHO]⁺, 497 [512-CH₃]⁺, 493 [511-H₂O]⁺, 491 [551-CH₂OHCHO]⁺, 457 [501-CH₃CHO]⁺, 451 [595-(S₄- OH)]⁺, 443 [493-CH₃OH-H₂O]⁺, 439 [457-H₂O]⁺, 433 [M⁺-S₄-S₃-(S₂-OH)-CH₃CHOH]⁺, 429 [493-2CH₃OH]⁺, 421 [453-CH₃OH]⁺, 419 [451- CH₃OH]⁺, 415 [433-H₂O]⁺, 383 [415-CH₃OH; 443-H₃COCHO]⁺, 379 [439- CH₂OHCHO]⁺, 377 [421-CH₃CHO]⁺, 369 [429-CH₂OHCHO]⁺, 365 [457- CH₃OH-CH₂OHCHO]⁺, 359 [419-CH₂OHCHO]⁺, 347 [379-CH₃OH]⁺, 339 [383-CH₃CHO]⁺, 335 [C₁5H₂7O₈]⁺, 333 [365-CH₃OH]⁺, 327 [359- CH₃OH]⁺, 325 [369-CH₃CHO]⁺, 321 [M⁺-(Genin-O-S₁-O-S₂)], 317 [335- H₂O]⁺, 309 [327-H₂O]⁺, 303 [335-CH₃OH]⁺, 295 [339-CH₃CHO]⁺, 289 [321-CH₃OH]⁺, 281 [325-CH₃CHO]⁺, 275 [M⁺-Genin-S₄-(S₃-OH)], 273 [317-CH₃CHO]⁺, 265 [309-CH₃CHO]⁺, 199 [243- CH₃CHO]⁺, 197 [241-CH₃CHO]⁺, 181 [213-CH₃OH]⁺, 159 [C7H₁₁O₄]⁺, 115 [159-CH₃CHO]⁺.

Deniculatin (2), mp 124-127°C, $[\alpha]_D$ -19.4° (\underline{c} , 0.155; MeOH), (Found: C, 63.6, H, 8.73%, C₃₄H₅₆O₁₁ requires C, 63.75; H, 8.75%). It responded positively to xanthydrol, Keller-Kiliani, Feigl and Liebermann-Burchardt reactions. ¹HNMR δ 0.90 (3H, s, 19Me), 0.93 (3H, s, 18Me), 1.19 (3H, d, J=6Hz, 21Me), 1.22 (3H, d, J=7Hz, 6 'Me -Dig), 1.75-1.81 (1H, H-2 'ax-Dig), 2.11- 2.17 (1H, H2 ' eq-Dig), 3.49 (3H, s, OMe), 4.0-4.06 (1H, m, H-20), 4.64 (1H, dd, J=9 and 2Hz, H-1-Dig), 4.82 (1H, d, J=1Hz, H-1 '-Gal), 5.28 (1H, m, H-6). FABMS m/z 663 [M⁺+Na], 622 [M⁺-H₂O], 577 [622-CH₃CHOH]⁺, 559 [577-H₂O]⁺, 515 [559-CH₃CHO]⁺, 509 [559-H₂O- CH₃OH]⁺, 507 [M⁺-C₅H₉O₄], 489 [507-H₂O]⁺, 483 [515-CH₃OH]⁺, 464 [M⁺-(Gal-OH)], 429 [489-CH₃OCHO]⁺, 419 [464-CH₃CHOH]⁺, 408 [483- CH₃-CH₂OHCHO]⁺, 404 [419-CH₃]⁺, 393 [408-CH₃]⁺, 386 [404-H₂O]⁺, 371 [386-CH₃]⁺, 369 [429-CH₃-CH₂OHCHO]⁺, 351 [369-H₂O]⁺, 327 [371- CH₃CHO]⁺, 307 [disaccharide-OH]⁺, 289 [307-H₂O]⁺, 211 [289-H₂O- CH₂OHCHO]⁺. EIMS m/z 577 [M⁺-CH₃CHOH-H₂O], 419 [M⁺-(Gal-OH)- CH₃CHOH], 401 [577-(Gal-OH); 419-H₂O]⁺, 386 [401-CH₃]⁺, 371 [386- CH₃]⁺, 368 [386-H₂O]⁺, 339 [401-H₂O-CH₃CHO]⁺, 306 [disaccharide- H₂O]⁺, 289 [Genin-CH₃CHOH]⁺, 256 [306-H₂O-CH₃OH; 289-H₂O-CH₃OH; 289-H₂O-CH₃OH, 226 [306-H₂O-CH₂OHCHO]⁺, 214 [306-CH₃OH-CH₂OHCHO]⁺, 131 [disaccharide-C₅H₉O4-H₃COCHO]⁺, 113 [131-H₂O]⁺.

Leptaculatin (3), mp 107-110^oC, $[\alpha]_D$ -5.8^o (<u>c</u>, 0.17; MeOH) (Found: C, 59.81; H, 8.25%; C40H66O16 requires C, 59.85; H, 8.23%). It gave positive tests in the xanthydrol, Keller-Kiliani and Liebermann-Burchardt reactions. It underwent NaIO4 oxidation. ¹H NMR $\delta 0.88$ (3H, s, 19Me), 1.0 (3H, s, 18Me), 1.25 (3H, d, <u>J</u> = 6Hz, 21Me), 1.29 (3H, d, <u>J</u>=6Hz, 6 ' Me-cym), 1.84-1.89 (1H, m, H-2 ' ax-cym), 2.28-2.34 (1H, m, H-2 ' eq-cym), 3.37-3.41 (1H, m, H-4 ' -terminal Glu), 3.52 (3H, s, OMe), 3.8 (1H, m, H-20), 4.32 (2H, d, <u>J</u>=8Hz, H-1 ' -Glu). 4.45 (1H, dd, <u>J</u>, 9 and 2Hz, H-1 ' -cym), 5.82-5.38 (1H, m, H-6). ¹³C NMR data is given in Table 1. FABMS m/z 803 [M⁺+1], 784 [M⁺-H2O], 757 [M⁺-CH₃CHOH], 742 [757-CH₃]⁺, 739 [757-H₂O]⁺, 724 [784-CH₂OHCHO]⁺, 721 [739-H₂O]⁺, 703 [721-H₂O]⁺, 695 [742-CH₃-CH₃OH]⁺, 651 [695-CH₃CHO]⁺, 647 [724-CH₃CHOH-CH₃OH]⁺, 640 [M⁺-(terminal Glu-OH)], 635 [703-2H₂O-CH₃OH]⁺, 603 [647-CH₃CHO]⁺, 585 [603- H₂O]⁺, 577 [640-H₂O-CH₃CHOH]⁺, 573 [651-H₂O-CH₂OHCHO]⁺, 555 [573- H₂O]⁺, 549 [585-2H₂O]⁺, 545 [577-CH₃OH]⁺, 530 [545-CH₃]⁺, 515 [530-CH₃]⁺, 507 [585-H₂O-CH₂OHCHO]⁺, 495 [555CH2OHCHO]⁺, 486 [trisaccharide]⁺, 469 [trisaccharide-OH]⁺, 437 [469-CH3OH]⁺, 419 [437-H2O]⁺, 401 [419-H₂O]⁺, 391 [469-H₂O-C₂H₄O₂]⁺, 383 [401-H₂O]⁺, 365 [383-H₂O]⁺, 355 [391-2H₂O]⁺, 313 [391-H₂O-CH2OHCHO]⁺, 281 [313-CH3OH]⁺. EIMS m/z 460 [M⁺ - terminal Glu - (Glu-OH)- H2O], 450 [trisaccharide-2H2O]⁺, 436 [trisaccharide-CH3OH-H2O]⁺, 433 [M⁺-terminal Glu-(Glu-OH)-CH3CHOH], 419 [M⁺-terminalGlu-(Glu- OH)-CH₃CHCHOH-H], 418 [436-H₂O; 450-CH₃OH]⁺, 404 [419-CH₃]⁺, 401 [433-CH₃OH]⁺, 400 [418-H₂O]⁺, 386 [404-H₂O]⁺, 383 [401-H₂O]⁺, 382 [400-H₂O]⁺, 357 [460-CH₃CHOH-CH3CHCHOH]⁺, 356 [357-H]⁺, 353 [trisaccharide-C5H9O4]⁺, 342 [trisaccharide-cym]⁺, 339 [383-CH3CH0H]⁺, 326 [386-CH3-CH3CH0H]⁺, 325 [342-OH]⁺, 324 [trisaccharide-(terminal Glu-OH)]⁺, 321 [353-CH₃OH]⁺, 317 [353- 2H₂O]⁺, 307 [325-H₂O; 324-OH]⁺, 303 [321-H₂O]⁺, 289 [307-H₂O]⁺, 285 [303-H2O]⁺, 278 [324-OCHOH]⁺, 277 [321-CH3CHO]⁺, 271 [289- H2O; 317-HOCHO]⁺, 264 [342-C2H4O2]⁺, 259 [277-H₂O]⁺, 257 [289- CH₃OH]⁺, 256 [324-CH₃OH-2H₂O]⁺, 248 [324-CH₃OH-CH₃CHO]⁺, 239 [257-H₂O; 285-HOCHO]⁺, 231 [277-HOCHO]⁺, 229 [289-C₂H₄O₂]⁺, 228 [264-2H₂O]⁺, 213 [259-HOCHO]⁺, 210 [228-H2O]⁺, 209 [C7H13O7]⁺, 199 [259-C2H4O2]⁺, 197 [229-CH3OH]⁺, 191 [C8H15O5]⁺, 180 [Glu]⁺, 163 [209-HOCHO; 180-OH]⁺, 162 [cym]⁺, 159 [191-CH₃OH]⁺, 145 [cym- OH; 191-HOCHO; 163-H₂O]⁺; 131 [191-C2H4O2]⁺, 127 [145-H2O]⁺, 115 [159-CH3CHO]⁺, 113 [145-CH3OH]⁺, 103 [C4H7O3]⁺, 95 [127-CH3OH; 113-H2O]⁺, 87 [C4H7O2]⁺.

Mannich Hydrolysis of (1)

To a solution of (1) (30 mg) in acetone (5 ml) conc. HCl (0.05 ml) was added. After 3 days, the reaction mixture showed a new spot identical to D-cymarose (TLC, PC). After 7 days, two more spots appeared which were identified as calogenin (4) and presumably a disaccharide (5) (TLC). Hydrolysis was complete after 10 days showing four spots identified as calogenin, D-cymarose, D- digitoxose and 3-O-methyl-D-galactose (TLC, PC, $[\alpha]D$). Usual working followed by column chromatography gave calogenin (6.5 mg) mp 198- 200°C, $[\alpha]D - 49.5^{\circ}$ (c. 0.2, MeOH), D-cymarose (6.0 mg) $[\alpha]D + 53.2^{\circ}$ (c. 0.125; H₂O), D- digitoxose (3.1 mg), $[\alpha]D + 43.3^{\circ}$ (c. 0.12, MeOH) and 3- O-methyl-D-galactose (3.4 mg), $[\alpha]D + 165^{\circ}$ (c. 0.15, H₂O).

Very Mild Acid Hydrolysis of (1)

A solution of (1) (15 mg) in 1,4-dioxane (2.5 ml) was hydrolysed with 0.01 N H₂SO₄ (2.5 ml) at room temperature. After 10 days, reaction mixture exhibited three spots which were identified as D-cymarose (TLC), presumably (6) and unhydrolysed (1). After 15 days, two new spots (TLC) appeared which were probably of (5) and (7). The hydrolysis was complete after 20 days showing four spots which after usual work up gave (4) (3.4 mg) m.p. 201-203°C, D-cymarose (3.0 mg) $[\alpha]_D + 52.5^\circ$ (\underline{c} , 0.15, MeOH), D-digitoxose (1.4 mg) $[\alpha]_D + 42.5^\circ$ (\underline{c} 0.10, MeOH) and 3-O-methyl-D-galactose (1.7 mg) $[\alpha]_D + 165.5^\circ$ (\underline{c} 0.13, MeOH).

Mannich Hydrolysis of (2)

To a solution of (2) (28 mg) in acetone (5 ml), conc. HCl (0.05 ml) was added. After 2 days the reaction mixture showed two spots identical with (4) and presumably the disachharide (5). After 5 days, hydrolysis was complete showing 3 spots identified as calogenin (4), D-digitoxose and 3-O-methyl-D-galactose (TLC, PC).

Usual work up followed by column chromatography yielded calogenin (8.2 mg) m.p. 200-202°C, D-digitoxose (3.6 mg) $[\alpha]_D$ + 42.9° (\underline{c} 0.16, MeOH) and 3-O-methyl-D-galactose (4 mg) $[\alpha]_D$ + 166.0° (\underline{c} 0.17, H₂O).

Mild Acid hydrolysis of (3).

A solution of (3) (12 mg) in 80% aq 1,4-dioxane (1 ml) was hydrolysed with 0.1N H₂SO₄ (1 ml) at 50°C for 30 min. The usual work-up afforded genin (4) (4 mg) mp 199-201°C, $[\alpha]_D$ -50° (\underline{c} , 0.15, MeOH) and syrupy sugar (10) (5 mg) $[\alpha]_D$ -53.6° (\underline{c} , 0.2, MeOH).

Mannich Hydrolysis of (3).

To a solution of (3) (30 mg) in acetone (5 ml) conc. HCl (0.05 ml) was added. After 2 days, the reaction mixture exhibited two spots identical to (4) and (10). After 5 days, two new spots were shown which were found identical with D-cymarose and cellobiose (TLC, PC). After 7 days the hydrolysis was complete showing three spots on TLC which were found identical with calogenin, D- cymarose and D-glucose. The usual work up afforded calogenin (7.8 mg) and two chromatographically pure sugars identified as D- glucose (7.5 mg) $[\alpha]_D+51.3^{\circ}$ (\underline{c} 0.13, H₂O) and D-cymarose (4.1 mg) $[\alpha]_D + 51.4^{\circ}$ (\underline{c} 0.11, H₂O) with the authentic samples.

Penta-O-Acetyl-Reticulin (8)

Compound (1) (3.5 mg) was dissolved in anhydrous pyridine (0.3 ml) and mixed with Ac₂O (0.3 ml). The mixture was heated on a water bath at 100° C for 1 hr. Usual work up after the removal of excess of Ac₂O gave (8). ¹HNMR δ 1.93-2.18 (15H, all s, together 5xOAc), 4.03-4.07 (1H, m, H-4, S4), 5.08-5.14 (1H, m, H-20).

Penta-O-Acetyl Deniculatin (9)

Glycoside (2) (4 mg) on acetylation with Ac₂O-C₅H₅N (1:1) at 100° C for 1 hr gave (9) after usual work up. ¹HNMR δ 2.0- 2.15 (15H, all s, 5 x OAc), 3.62-3.65 (1H, m, H-4 Gal), 4.53-4.6 (1H, m, H-20).

Octa-O-Acetyl Leptaculatin (11)

Glycoside (3) (4.2 mg) in C5H5N was mixed with Ac₂O (1:1) and the mixture was heated on a water bath at 100°C for 1 hr. Usual work up afforded (11). ¹HNMR δ 1.98-2.12 (24H, all s, together 8 x OAc), 4.65-4.69 (1H, m, H-20).

D-Cymaronic Acid Phenyl Hydrazide.

Solutions of D-cymarose (4.0 and 3.5 mg), obtained from the hydrolysate of (1) and (3) respectively, in H₂O were oxidized with Br₂ using the usual method yielding syrupy lactones which on treatment with phenyl hydrazine yielded the known crystalline D- cymaronic acid phenyl hydrazides (1.5 and 0.9 mg) mp 151-153^oC and 152-154^oC.

D-Digitoxonic Acid Phenyl Hydrazide

Solutions of D-digitoxose (2.8 and 3.0 mg), obtained as hydrolysis products from (1) and (2) respectively, in H₂O were oxidized with Br₂ yielding syrupy lactones. These lactones on reaction with phenyl hydrazine yielded known crystalline D- digitoxonic acid phenyl hydrazide (1.0 and 1.2 mg) mp 121-122°C and 121-123°C.

D-Gluconic Acid Phenyl Hydrazide

Solution of D-glucose (4.0 mg), from hydrolysate of (3), in H₂O was oxidised with Br₂ using the usual method yielding lactones which on further treatment with phenyl hydrazine gave D-gluconic acid phenyl hydrazide (1.6 mg) mp 195-197^o C.

Methyl-3-O-methyl-a-D-galactopyranoside

3-O-methyl-D-galactose (3.0 and 3.5 mgs) obtained from the hydrolysis of (1) and (2), were refluxed with absolute MeOH at 70°C for 18 hrs in the presence of cation exchange IR (120) H⁺ resin. The reaction mixture was filtered while hot and filtrate was concentrated. Column chromatography of the concentrates gave methyl-3-O-methyl- α -D-galactopyranoside (1.2 and 1.8 mg) [α]D + 161.9° (\underline{c} , 0.1, MeOH) and +162.4° (\underline{c} , 0.12, MeOH)

Acknowledgement

Authors are thankful to UGC and DST for Financial assistance and RSIC, CDRI, Lucknow for successful running of NMR and mass spectrum .

REFERENCES

- 1. Kaneda, N.; Chai, H.; Pezzuto, J.M.; Kinghorn, A.D.; Farnsworth, N.R.; Tuchinda, P.; Udchachon, J.; Santisuk, T.; Rentrakul, V. *Planta Med.* **1992**, *58*, 429-431.
- 2. Mitsuhashi, H.; Hayashi, K. Shoyaku.Zasshi 1985, 39, 1-27.
- 3. Deepak, D.; Khare, A.; Khare, M.P. Phytochemistry 1989, 28, 3255-3263.
- 4. Satyavati, G.V.; Gupta, A.K.; Tandon, N.; Seth, S.D. Eds. *Medicinal Plants of India (Vol.2)*, Indian Council of Medical Research: N. Delhi **1987**, pp. 151-160.
- 5. Sastry, B.S.; Vijaylakshmi, T.; Rao, D.V.; Rao, E.V. Indian Drugs 1985, 22, 611-612.
- 6. Krishna, P.V.G.; Rao, E.V.; Rao, D.V. Planta Med. 1975, 27, 395-400.
- 7. Prakash, K.; Sethi, A.; Deepak, D.; Khare, A.; Khare, M.P. Phytochemistry 1991, 30, 297-299.
- 8. Srivastava, S.; Khare, M.P.; Khare, A. Phytochemistry 1993, 32, 1019-1021.
- 9. Khare, N.K.; Khare, M.P.; Khare, A. Phytochemistry 1984, 23, 2931-2935.
- 10. Collins, P.M., Ed. Carbohydrates, Chapman and Hall: London, 1987; pp. 360.
- 11. Allgeier, H. Helv. Chim. Acta 1968, 51, 311-325.
- 12. Khare, M.P.; Khare, A. J. Carb. Chem. 1987, 6, 523-535.
- 13. Feigl, F. Spot Tests in Organic Analysis. 7th Edn, Elsevier: Amsterdam, 1975; pp. 337.
- 14. Collins, P.M. Ed. Carbohydrates, Chapman and Hall: London, 1987, pp. 244-245.
- 15. Shaub, F.; Kaufmann, H.; Stöcklin, W.; Reichstein, T. Helv. Chim Acta. 1968, 51, 738-767.

(Received in UK 9 August 1993; accepted 15 October 1993)